Corneal Risk Factors for Thermal Injuries

Correlations between Tear Cytokines, Chemokines, and Soluble Receptors and Clinical Severity of Dry Eye Disease

Kyung-Sun Na,1,4 Jee-Won Mok,2,4 Ja Yeon Kim,2 Chang Rbe Rho,2,3 and Choun-Ki Joo2,3

PURPOSE. To determine cytokine and chemokine concentrations in the tears of patients with dry eye disease (DED) and analyze the possible relationships with the clinical severity of DED.

METHODS. Patients were examined using the Ocular Surface Disease Index, corneal and conjunctival staining, tear breakup time, and impression cytology. They were divided into four groups according to the Dry Eye Workshop severity classification. Tears were collected from 133 patients with DED and 70 healthy controls. Concentrations of cytokines, chemokines, and soluble receptors in collected tear samples were analyzed using current technology with a Human Cytokine/Chemokine kit, a Human Cytokine/Chemokine Panel, and a Human Soluble Cytokine Receptor Panel.

RESULTS. The levels of cytokines interleukin (IL)-1β (P < 0.05), IL-6 (P < 0.001), IL-16 (P < 0.001), IL-33 (P < 0.05), G-CSF (P < 0.001), and transforming growth factor (TGF)-α (P < 0.05) were significantly higher in patients with DED, whereas those of cytokines IL-4 (P < 0.001), IL-12 (p40) (P < 0.001), IL-17A (P < 0.05), and interferon-β (P < 0.001) were significantly lower. The levels of Fractalkine (chemokine [C–X3–C motif] ligand 1; CX3CL1), MCP-1 (chemokine [C–C motif] ligand 2; CCL2), MIP-15 (chemokine [C–C motif] ligand 15; CCL15), and ENA-78 (chemokine [C–X–C motif] ligand 5; CXCL5) (P < 0.001, respectively) and soluble receptors, sIL-1RI (P < 0.05), sIL-6R (P < 0.05), soluble epidermal growth factor receptor (P < 0.05), and soluble tumor necrosis factor receptor 2 (P < 0.001), were higher in patients with DED. There were significant correlations between these molecules and the clinical severity of DED.

CONCLUSIONS. Fifteen molecules were elevated in the tears of patients with DED; four molecules were decreased. Although the levels of sIL-6R, sIL-6R, and sgp130 may be potential indicators of the homeostatic process, an increase in the levels of IL-6 and IL-1β are the earliest observable changes in patients with DED. Further study on the biomarkers in the pathogenesis of DED and treatment target modalities would be needed. (Invest Ophthalmol Vis Sci. 2012;53:5443–5450) DOI: 10.1167/iovs.11-9417
The study population comprised 133 patients with DED and 70 healthy controls. Written informed consent was obtained from all subjects, and the Ethics Committee of the Catholic University of Korea approved the study. The diagnosis of DED was based on the assessment of signs and symptoms by three observers (K.S. Na, C.R. Rho, and C.K. Joo) and according to each patient’s report of symptoms of ocular irritation as assessed by the Ocular Surface Disease Index (OSDI) score. Schirmer test (without anesthesia), tear film breakup time (tBUT), corneal staining with fluorescein, and conjunctival staining with lissamine green. These tests were used to qualify patients for inclusion in the study and for grading DED severity.

Subjective symptoms were graded on a numerical scale of 0 to 4 using the OSDI score: 0, none of the time; 1, some of the time; 2, half of the time; 3, most of the time; 4, all of the time. A 5-minute Schirmer test was performed using sterile strips without anesthesia. The Schirmer strip was placed at the notch of the inferior fornix; after 5 minutes, the strip was removed and measured at the point of maximum wetting. The tBUT was measured after placing a sodium fluorescein paper at the lower tarsal conjunctiva. The patients were asked to blink; the time before the defect appeared in the stained tear film was measured and recorded as the tBUT. For corneal fluorescein staining, the entire cornea was examined by slit-lamp evaluation with a yellow barrier filter and cobalt blue illumination. Anterior segment photographs were obtained and the stains were graded using the National Eye Institute method, a standardized scale of 0 to 3 for each of the five regions of the cornea: central, inferior, nasal, superior, and temporal. Conjunctival staining with lissamine green was evaluated according to the Oxford Schema (0–4) for the three regions of the conjunctiva: central, nasal, and temporal.

Patients’ signs and symptoms were analyzed for classification into the dry eye severity categories developed from the Dry Eye Workshop (DEWS) report by Asbell et al. Selected criteria including the OSDI, Schirmer test, tBUT, corneal staining, and conjunctival staining were used to classify disease severity. Patient evaluations were rated according to the numeric dry eye severity scale for each diagnostic test. Each patient was assigned an overall dry eye severity grade of 1, 2, 3, or 4 based on the mode and arithmetic mean of the individual severity grades for the selected criteria.

The exclusion criteria were as follows: an inflammatory disease not associated with dry eyes; ocular trauma or surgical history within the previous year; pregnancy; systemic diseases such as diabetes and hypertension; rheumatologic, hematologic, and respiratory diseases; systemic infection; and any other significant disease. During the study, patients were excluded if they were found to fulfill any of the above exclusion criteria, even if they were unaware of fulfilling any of these criteria at the time of enrollment.
Results of the quantitative polymerase chain reaction (qPCR) for IFN-γ and IL-17A are described in Fig. 5. Compared with the normal controls, patients with DED did not show a significant increase or decrease in the levels of IFN-γ and IL-17A. On the other hand, Sjögren's patients with DED showed higher levels of IFN-γ and IL-17A. Median IFN-γ transcript levels were 0.57 in controls (\(n = 3\)), 0.50 in DED severity 1 (S1) (\(n = 10\)), 0.29 in DED severity 2 (S2) (\(n = 10\)), 0.39 in DED severity 3 (S3) (\(n = 10\)), and 0.76 in Sjögren's DED (\(n = 10\)). The median levels of IL-17A were 0.93 in the controls; 1.23, in DED S1; 0.76, in DED S2; 0.58, in DED S3; and 2.19, in Sjögren’s DED (data not shown).

DISCUSSION

Desiccating environmental stress and changes in tear fluid composition accompanying lacrimal gland dysfunction appear to trigger ocular surface inflammation. Tear cytokine and chemokine assays provide direct evidence of ocular surface inflammation in this condition. Moreover, elevated levels of tear cytokines and chemokines would be superior indicators of disease severity or biomarkers in the early stage of disease compared with the clinical tests used currently. Furthermore, such cytokines and chemokines might be used as selective targets for treatment modalities in DED.

Lam et al. examined the tears of healthy controls and patients with aqueous-deficient dry eye, evaporative dry eye, and mixed type dry eye using microarrays; they reported that proinflammatory cytokines, including IL-1β, IL-6, IL-8, TNF-α, IFN-γ, cystatin SN, lipocalin 1 (LCN 1), and α-1-antitrypsin are distinctly elevated in the DED group. Cystatin SN and IL-6 exhibited the most distinct differences of all tested proteins when comparing controls with subjects with DED. Li et al. also tested several proinflammatory cytokines such as IL-6, TNF-α, and IFN-γ, and reported similar deviations between the tears of Sjögren’s patients with DED and controls. Enriquez-de-Salamanca et al. examined the inflammatory molecules in the tears from DED patients with Sjögren’s syndrome.
46 eyes of patients with DED and 18 eyes of healthy controls. Both subjective and objective DED studies were performed, and cytokine and chemokine levels were measured by multiplex bead analysis, compared with control levels, and correlated with clinical tests. They reported that pain is correlated with IL-6 and IL-8/CXCL8 levels, and that tBUT is inversely correlated with IL-1Ra. The Schirmer test and tear lysozyme levels were negatively correlated with IL-1Ra, IL-8/CXCL8, fractalkine/CX3CL1, IL-6, and IP-10/CXCL10; conjunctival staining was negatively correlated with EGF and positively with IL-6. Massingale et al.15 also concluded that tears from patients with dry eye disease contained significantly increased concentrations of cytokines that were also correlated to disease severity.

Our study results show that the levels of IL-1β, IL-6, and their soluble receptors sIL-1R1 and sIL-6R, were significantly elevated in the tears of patients with DED. In addition, IL-33, a member of the IL-1 cytokine family, was also elevated. The IL-1 receptor (IL-1R)/toll-like receptor (TLR) superfamily plays a critical role in the regulation of inflammatory and immune responses.22 More recently, IL-1 receptor type 1 (IL-1R1) signaling was identified as a critical step in the differentiation and commitment of Th17 cells, which mediate the development of autoimmune diseases.23,24 Upon the binding of IL-1 to IL-1R1, IL-1R accessory protein (AcP) is recruited to form a high-affinity IL-1R1/IL-1RAcP heterodimeric receptor, which initiates the downstream signaling inflammatory cascade. This pathway is strictly regulated by multiple inhibitory molecules, including membrane-bound IL-1RII, secreted soluble (s)IL-1R1, sIL-R2, and sIL-1RAcP, the regulatory IL-1R1 antagonist (IL-1Ra), and the IL-1R1 signaling–induced single Ig IL-1R–related molecule. This negative feedback system suppresses excessive IL-1 signaling and Th17 cell differentiation.25,26 The simultaneous elevation of IL-1β and sIL-1R1 suggests that natural homeostasis is maintained to inhibit further systemic autoimmune responses following the local inflammation of ocular surfaces; this is strengthened by a gradual decrease in IL-17A in the tears of patients with DED. This is concordant with the results of previous reports in the tears of both aqueous-deficient and evaporative-type patients with DED.9,21

IL-6 is reported to be increased in tears and the conjunctival epithelium, and is described as one of the key molecules in DED. In addition, sIL-6R expression in tears is upregulated in chronic inflammatory conditions of the ocular surface.27,28 Series of IL-6 activities are critical for resolving innate immunity and promoting acquired immunity; this transition is a central event in the resolution of any inflammatory condition, and the disruption of this immunologic switch may potentially distort the immune response, affecting the onset of autoimmune or chronic inflammation.29,30 A previous study investigated how IL-6 governs the resolution of acute innate immunity and steers the transition to an acquired immune response. IL-6 directs T-cell recruitment by regulating local chemokine secretion (i.e., CXC chemokine ligand 10, CC chemokine ligand 2 [CCL2], CCL4, CCL5, CCL11, and CCL17) and chemokine receptor (CC chemokine receptor 3 [CCR3], CCR4, CCR5, and CXC chemokine receptor 5 [XCR1]).
kine receptor 3) expression on the CD3⁺ infiltrate. The two models of IL-6 activation are known as classical interleukin activations that occur via membrane-bound IL-6 activation and sIL-6R–mediated signaling (IL6 trans-signaling). In both cases, responses are elicited through engagement with membrane-bound gp130. Moreover, classical IL-6 signaling is unaffected by sgp130, yet preferentially binds the IL-6/sIL-6 complex to antagonize IL-6 trans-signaling. IL-6 trans-signaling is known to contribute to the perpetuation of inflammation; of consequence, high sgp130 might represent an indirect marker of IL-

FIGURE 2. Tear chemokines of the patients with dry eye disease with serial severity and control groups. Significantly elevated levels of CXCR1, CCL2, CCL15, and CCL24 in the patients with dry eye disease. Control versus patients with dry eye disease; *P < 0.001, **P < 0.05.

FIGURE 3. Patients with dry eye disease with serial severity reveal significantly lower levels of the cytokines, IL-12 (p40), IFN-γ, IL-17A, and IL-4 as compared with the group of controls. Control versus patients with dry eye disease; *P < 0.001, **P < 0.05.
6–mediated inflammation becoming a chronic process. We assume that the IL-6/sIL-6R complex plays a role in the pathogenesis of DED and that the marked elevation of its natural antagonist, sgp130, may be a result of ocular homeostasis in response to local inflammation.

Innate granulocyte macrophage–colony stimulating factor (GM-CSF) is critical for IL-6 responses by dendritic cells and for the generation of pathologic CD4+ T cells producing IL-17 (Th helper [Th]17) from naive T cells. A novel proinflammatory subset of Th17, which is distinct from Th1 and Th2, has been suggested to mediate the inflammation associated with several autoimmune diseases. The involvement of T cells in the immunopathogenesis of DED is supported by many investigators, including increased T cells in the conjunctiva, the presence of IFN-γ+ T cells in the murine model, and improvement of DED after the administration of a topical T-cell immunosuppressant. The dysfunctions of regulatory T cells (Treg) and pathogenic effector T cells are known to contribute to the pathogenesis of DED in animal models. However, our data showed trace levels of IL-17A and IFN-γ in the tears of patients with DED. To validate the findings, gene expression analysis was performed by qPCR with conjunctival impression cytology samples. The results revealed that unlike Sjögren’s DED, which showed higher levels of both IL-17A and IFN-γ than the healthy controls, non-Sjögren’s DED showed no significant increase or decrease. There was a tendency of a gradual decrease in the IL-17A levels according to the clinical severity grade; however, these differences were not statistically significant. In terms of the conflicting results with respect to IFN-γ and IL-17A, we assume that the suppressor T-cell population, which is a natural inhibitor of self-reactive Th1 (INF-γ), Th2 (IL-4+), and Th17 (IL-17A) cells, may function to some extent in the mild and early stages of DED. We excluded patients with DED severity 4 because of insufficient tear volume. If patients with severe and late-stage DED had been included, the results might have been different. Another point to consider is that the tears might not show the condition of the ocular surface. The impression cytology of the patients with DED not only showed inflammatory cell infiltration but also showed changes in surface tissue, such as corneal keratinization. The small amount of tears as well as the pathologic changes of the ocular surface could influence IL-17A and IFN-γ levels. Further studies involving larger numbers of tissue analyses via impression cytology or conjunctival biopsy are required. Although we analyzed the individual verification by qPCR, our sample numbers were too small to confirm whether the levels of IL-17A and IFN-γ increased or decreased in patients with DED. We conclusively showed that these cytokines were elevated in Sjögren’s DED, whereas non–Sjögren’s DED might have a different pathophysiology, at least in the mild and early stages of DED. Finally, the Luminex technology has the potential weakness of protein aggregation through
protein interactions, which may affect the IL-17A and IFN-γ levels in the tears of patients with DED.

EGF produced by human lacrimal glands has presumed biologic activity on the ocular surface. Decreased EGF is also noted in patients with DED compared with normal controls. EGFR belongs to the receptor tyrosine kinase family and is widely expressed in the ocular surface. The activation of EGFR is involved in the physiologic procedures of cell proliferation, migration, differentiation, and apoptosis via multiple signal transduction pathways, particularly mitogen-activated protein kinases (MAPKs). MAPKs are known to stimulate the production of inflammatory cytokines and matrix metalloproteinases (MMPs); they could play important roles in the induction of these factors, which are implicated in the pathogenesis of DED. Increased tear osmolarity causes a signaling cascade that involves phosphorylation of the stress-activated MAPKs, p38, and c-Jun N-terminal kinase (JNK), followed by the activation of transcription factors such as activator protein-1 (AP-1) and nuclear factor kappa B (NF-kB); this results in increased levels of proinflammatory cytokines such as IL-1β, TNF-α, IL-8, and IL-6. The distinct elevation of proinflammatory cytokines such as IL-6, G-CSF, sEGFR and chemokines, MIP-1β, in our study suggest that the MAPK pathway is involved in the chronic inflammation of DED pathogenesis.

In the current study, we found increased inflammatory cytokines and chemokine such as CXC3LC1, which is stimulated by proinflammatory cytokines, and decreased anti-inflammatory cytokines in the tears of patients with DED. In conclusion, we found that the levels of some cytokines, chemokines, and soluble receptors are altered in the tears of patients with DED. The concentrations of these molecules are correlated with clinical severity. Many of the molecules increased gradually and significantly according to clinical severity, which was confirmed with classical diagnostic tools. The concentrations of the IL-1/sIL-R1 and IL-6/sIL-6R complexes and their natural inhibitors suggest that these molecules are not merely a consequence of events in the corneal epithelium, but are direct contributors in the development of DED. Compared with previously published studies on inflammatory cytokines in tears of patients with DED, this study differs in that it addresses tear cytokines that appear before the severe stage of DED. Overall, these findings are also beneficial to the development of therapeutic treatment targets using immune-suppressing agents blocking inflammatory pathways, expected for further evaluation.

Acknowledgments

The authors thank Min-Ju Choi, the charging nurse in the Dry Eye Clinic in Seoul St. Mary’s Hospital, who collected blood samples and obtained informed consent from the subjects.

References

